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Coherent dynamics of an asymmetric particle in a vertically vibrating bed
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Coherent motion is found to emerge out of fluctuations in a vibrated asymmetric particle. Depending on the
parameters, amplitude, and frequency of the box, the motion of the particle is classified into several phases.
The transition between fluctuating motion and unidirectional motion occurs with constant acceleration in the
low-frequency regime and constant amplitude in the high-frequency regime. We show through dimensional
analysis thatthis behavior does not dependon the detailed geometry of the particle.
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Consider a particle set on a horizontal plate. When o
applies vertical vibrations to the system, a coherent horiz
tal translational motion emerges. The same type of inter
ing phenomena can be seen in different systems from toy
micromachines and granular systems. How does this se
ingly paradoxical dynamics appear from fluctuations that
orthogonal to the direction of the coherent motion? Since
system has a translational symmetry in a horizontal direct
no horizontal acceleration is possible owing to the mom
tum conservation as long as the particle is forced only ve
cally by an external vibration. Even if the particle does n
possess spherical symmetry, the same elementary law
physics can be applied to the motion of the centroid of
particle, resulting in no horizontal motion. In this paper, w
present experimental results that the coherent transport
particle emerges out of fluctuations. We observe distinct tr
sitions from Brownian-like motion to coherent motion, o
which a simple dimensional analysis is performed to sh
the generality of the finding.

The emergence of coherent transport phenomena has
studied in various situations. Directional motion or determ
istic diffusion out of a chaotic system has been studied
dynamical systems@1–3#. Directional motion out of Brown-
ian systems has been extensively studied in relation to
lecular motors@4,5#. Mechanical fluctuation is also expecte
to be an energy source of the micromachines, since the
ventional mode of energy supply into a microscale inst
ment is not practical. Coherent and incoherent behaviors
also demonstrated on granular systems in a vibrating b
which have attracted considerable attention@6–9#. It has
been clarified individually for specialized systems, howev
the generic mechanism of the emergence of coherent mo
out of a ‘‘noisy’’ situation has not been well understoo
Here we derive conditions for the emergence of coher
motion in an oscillating environment without employing
detailed geometry of the material. We also discuss that
sipation and asymmetry of the system play essential role
these phenomena.

We use an asymmetric particle sandwiched between
parallel plates. The asymmetric particle is a pipe, made
brass with edges of different sizes as shown in the inse
Fig. 2. The small internal diameterr 1, large external diam-
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eter r 2, height h, and thickness of the pipe are 2.0 mm
3.3 mm, 2.6 mm, and 0.1 mm, respectively. The mass is
mg. The asymmetric particle is the simplest one which
hibits nearly one-dimensional deterministic motion in o
system. Static electricity is not significant for the motion
the particle. The particle is set in a vibrated thin box
shown in the inset in Fig. 2. The box is made of a plexig
spacer hollowed cylindrically with a diameter of 100 m
and height of 3.6 mm which is sandwiched between t
glass plates. A gapl between the particle and the box
0.36 mm. The box is mounted on a vibration device~VG-
100C:vibration test system! controlled by a function genera
tor ~8165A:HP! and is vibrated vertically with a sinusoida
oscillation with an amplitudeA and a frequencyf. The am-
plitude is measured by an accelerometer~PV85:RION! and
an amplitude calculator~VM80:RION! with an accuracy of
one micrometer.

As shown in the inset in Fig. 2, we defined the angleu(t)
as that between the rotational symmetry axis of the asymm
ric particle and the horizontal axis, and the positive direct
~forward motion! as the direction of the arrow. The motion
of the particle are recorded by a charge coupled device c
era with a time resolution of 1/30 sec. The recorded ima
are digitized with a resolution of 5803430 pixels,
0.117 mm/pixel, and 256 gray scale levels. We measure
jectories of the particle by determining the position of t
centroid as a function of time. Thex axis is defined by the
vector that links the initial point to the final point of th
trajectory. The velocity vector is measured as a displacem
of the particle per frame divided by 1/30 sec.Vx(t) is defined
as a component of the velocity vector projected to thex axis.
Since the componentVy(t) is sufficiently smaller than the
componentVx(t) @10#, we neglect the componentVy(t) and
hereafter discuss only the componentVx(t). The alignment
of x axis and the axis of symmetry of the particle is always
good as (eW x•VW )/uVW u;0.95. A dimensionless acceleration am
plitude is defined asG5A(2p f )2/g, whereg is the gravita-
tional acceleration.

Depending on the parameters, we find that the part
displays several characteristic motions. Figure 1 shows
evolution of the componentVx(t) in two phases. One phas
©2003 The American Physical Society01-1
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~disordered phase! is characterized by the motion of rapid
and randomly varying direction as shown in Fig. 1~a!, where
the componentVx(t) changes its sign with a time scale of th
order of 100 msec. This ‘‘irregular motion’’ reminds us o
Brownian motion. In the other phase~ordered phase!, a
qualitatively different motion is observed, where two m
tions coexist, namely, unlocked motion~the motion in disor-
dered phase! and locked motion, as shown in Fig. 1~c!. In the
locked motion, as represented by the symbolb, the particle
coherently moves in the forward direction with almost u
form velocity. Compared with Fig. 1~b!, the locked motion
continues for a much longer duration than the unlocked m
tion. The coexistence of unlocked motion~a burst state! and
locked motion~a laminar state! reminds us of the intermit-
tency chaos@11#. We also analyze the behavior of the ang
u(t). u(t) represents swinging dynamics of the particle
the vertically vibrating box. In the disordered phase,u(t)
varies irregularly, while in the ordered phase,u(t) varies
periodically with the period entrained by the external vib
tion ~data not shown!. The periodic evolution leads to
locked motion, as shown by symbolb in Fig. 1~c!.

Transition between the two phases~disordered phase an
ordered phase! are found to occur at a certain driving amp
tude and frequency. We characterize these phases using
teria that will be explained later. Figure 2 shows the ph
diagram. If the dimensionless amplitudeG is less than unity
(G,1), no motion is observed due to the gravity. WhenG
reaches unity, the particle starts moving vertically but wi
out any horizontal motion, and it continues up toG'1.5.
The particle starts to move horizontally ifG is beyond 1.5
~onset of the disordered phase!. As we increase the paramet
further, the ordered phase appears above the transition

FIG. 1. ~a! The evolution of the velocity componentVx(t) of
unlocked motion~disordered phase!: A50.109 mm,f 560 Hz. ~b!
An expansion of a part of~a!. ~c! The evolution of the velocity,
where qualitatively different motions coexist; an unlocked mot
~symbol a), and a locked motion~symbol b): A50.245 mm, f
560 Hz.
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G'2, and it continues up toG'20 ~upper limit for obser-
vation in the system!. For higher frequency regime
(>50 Hz), we find a different transition line that is chara
terized as a fixed amplitude as shown in Fig. 2. Although
do not discuss them in detail in this paper, there are so
other phases of interest in the system. The phases are
served in the high-frequency region as shown in the do
and hatched areas in Fig. 2. In these phases,u(t) does not
fluctuate considerably. The particle, however, oscillates
tween forward and backward motions on the order of 1 s in
the dotted area. In the hatched area, it exhibits mostly ba
ward motion.

The criteria for the characterization of the phases are
termined by the analysis of the statistical property of t
system, i.e., the velocity distribution function~Fig. 3! and the
distribution function of the intervals of the consecutive fo
ward motion~Fig. 4!. We also consider the evolution ofu(t).
First, by comparing the velocity distribution function in Fig
3~a! @graph ~3!# with that in Fig. 3~a! @graph ~4!#, it is ob-
served that one of the peaks is shifted from minus to plus
this region, 0.179 mm,A,0.190 mm, the backward motio
in the disordered phase disappears gradually and the lo
motion emerges as the amplitude is increased. By a fur
increase of the amplitude, the locked motion becomes do
nant in the system. Therefore, the mean velocity as a fu
tion of the amplitudeA abruptly changes at the amplitud
A5Ac as shown in Fig. 3~b! ~closed circles!. The disconti-
nuity of the mean velocity on the amplitude exists in ord
disorder transition in the wide region of the parametersA

FIG. 2. Phase diagram of the parameters, the driving amplit
and the frequency. (n) denotes the onset of the disordered pha
from the the stationary phase. (,) denotes the transition from th
disordered phase to the stationary phase. Hysteresis is observ
the transition. Coherent unidirectional motion is observed above
parameters marked by closed diamonds. The dot-dashed line c
sponds toG51. The dashed lines are the best fit to the transit
points;Gc51.8 in the high-frequency regime, andA50.18 mm in
the low-frequency regime. Inset: schematic view of our system.
two long rectangles are glass plates.
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and f. Therefore, one of the criteria is whether the discon
nuity appears or not. Second, the probability distribut
function of the intervals of the consecutive forward moti
suggests that, in both disordered and ordered phases, th
change process between forward and backward motio
‘‘random’’ in the sense that the function can be fitted pro
erly by an exponential function, exp(2t/t0) ~see Fig. 4!. The
decay time of the consecutive forward motion,t0, depends
on the amplitude of external excitation@12#. Figure 3~b!
~open circles! shows the decay time as a function of t
amplitude. It also has a discontinuity atA5Ac coinciding
with that of the mean velocity. We suspect that at the tran
tion point, a type of resonance mechanism plays a role in
sudden change of dynamics into locked motion. Therefo
the other criterion is whether the discontinuity appears or
in the decay time. The last criterion is whetheru(t) exhibits
periodic motion locked by the external vibration or not. A
cording to these criteria, we characterize the ordered ph

Close observation of the phase diagram~see Fig. 2!, par-

FIG. 3. ~a! The velocity distribution function in the disordere
phase@graphs ~1!–~3!# and ordered phase@graphs ~4!–~6!#, ob-
served by varying amplitudeA with fixed frequencyf 560 Hz. The
distribution functions can be well fitted by double-peaked Gauss
functions B exp(2cx2)1B́ exp(2ćx2). ~b! The amplitude depen
dency of the mean velocitŷVx& ~closed circles! and characteristic
decay timet0 of the consecutive motion~open circles!. Error bars
of the mean velocity are smaller than 5.6% of the mean value.
amplitude Ac is the critical value at which the locked motio
emerges.
04030
-

ex-
is
-

i-
e

e,
t

e.

ticularly the transition between disordered phase and orde
phase, we find the following characteristics in the phase d
gram.

~1! The transition occurs atGc'1.8 in a low-frequency
region.

~2! The transition occurs atAc'0.18 mm in a high-
frequency region.

We adopt dimensional analysis to understand these p
liar characteristics. There are three time scales in the sys
~1! a time scale for parabolic motion caused mainly by t
gravity, tg5A2H/g, whereH is the length that the particle
can travel freely between the plates,~2! the period of exter-
nal oscillation, t f51/f , and ~3! reorientation time,t I

5A(I /maL), whereI is the inertial moment of the particle
a is the acceleration imposed on the particle,m is the mass
of the particle, andL is the characteristic length of the pa
ticle @13#.

To estimate the transition in the low-frequency regime,
chooseH52A, since it is the maximum length that the pa
ticle can travel vertically for a half period of the extern
oscillation, and furthermorel !A is satisfied in the low-
frequency regime. Then the resonance condition betw
parabolic motion of the particle and external oscillation c
be given by 2tg5t f , wheretg corresponds to one-half cycl
of the external oscillation. It yieldsAc5(g/16f 2). Substitut-
ing this relation into the the relationG5@(2p f )2A/g#, we
obtain Gc52.46 for the transition. Although the choice o
numerical factors in equations needs more elaborate calc
tion based on the detailed dynamics of the system, the s
plest choice results in a reasonable agreement with the
perimental result (Gc'1.8). The transition occurring with
constantA in the high-frequency regime is explained as fo
lows. When the period of external excitation is much shor
than the acceleration time of the particle, i.e.,t f!tg , the
particle hardly moves in the gap of the cell due to inertia.
fact, this is confirmed in the experiment by analyzing t
vertical motion of the particle in the box from the video.
such a situation, the particle is hit alternately from top a
bottom plates for every one-half cycle of the external os
lation, while the particle remains at the same height. T

n

e

FIG. 4. The distribution function of the intervals of consecuti
forward motion. The circles, triangles, squares, and diamonds
note the distributions at the driving amplitude 0.109 mm
0.179 mm, 0.190 mm, and 0.273 mm, respectively, where the
quency is fixed atf 560 Hz.
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condition, 2A5 l , yields, Ac5 l /2. The above estimates fo
the transitions agree well with the experimental observa
(Ac51.8 mm).

Next we consider the crossover of the two regimes in
order-disorder transition at a frequency of aroundf 5 f c ( f c
'50 Hz). In the low-frequency regime, we assumed thal
!A, and H52A, while in the high-frequency regime,A
becomes smaller thanl. In that case, one can assumeH5 l ,
because this is the minimum and necessary length for
particle to travel until it hits the plate. Thus,tg

min5A2l /g is
obtained. The condition for the resonance between 2tg

min and
t f , with l 50.36 mm, yieldsf c558 Hz.

The dimensional analysis in the above might be an ov
simplification if we consider complicated dynamics of t
particle in reality. For instance, the resonance condition g
only the phase boundaries, however, the coherent mo
continues up toG;20. Elucidating the mechanism workin
at highG is an open problem. We suffice to note the expe
mental fact that the particle’s head always hit the plates,
oscillation of the angleu is locked to the external frequenc
at low frequency ordered regime, and stationary in high f
quency ordered regime even at largeA. We experimentally
verified that the analysis also predicted a transition in
case of a bolt whose shape, mass, and size are different
those of the asymmetric particle. An application to microm
tors may also be interesting. Hondaet al. found that the sign
of the mean velocity of a micromotor in a narrow pip
quickly varies from minus to plus at a certain frequency
fixing the amplitude@14#.

Finally, we mention open problems; how does the coh
ent motion arise out of orthogonal external perturbations,
.
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what determines the direction of the motion? We supp
that if the frictional force in the forward motion differs from
that of the backward motion due to the asymmetry of
particle, the time average of the horizontal force may not
always vanishing. The most efficient acceleration by
peated collisions might be a resonance between swing
motion and collision, otherwise horizontal forces are ca
celed out due to the chaotic motion of the particle. Th
mechanism of the emergence of the coherent motion ou
fluctuations may be general in different systems. In fact,
thermal ratchet systems, the highest efficiency is attai
when the resonance condition is satisfied@15#. Furthermore,
in our deterministic system, thermal noise is negligible a
resonance is playing more important roles; the exponen
distribution of interval may not be just a Poisson distributi
that commonly appears in stochastic systems. The expo
tial distribution of regular intervals interspersed by irregu
intermissions can arise through a global bifurcation crea
by a homoclinic orbit connecting a destabilized saddle po
@16#. The existence of chaos behind the motion is inde
indicated by the variance of the velocity distribution@see
Fig. 3~a!# and the exponential decay of the temporal corre
tion function for the velocity componentVx(t) ~data not
shown!. Thus, the understanding of the partial resonan
mechanism in deterministic systems may serve as an in
esting challenge.
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